кандидат химических наук В. Благутина
Сверхкритическая вода

С недавних пор сверхкритические (флюидные) технологии стали весьма популярны. На Западе их используют для чистки белья, очистки сточных вод и металлов, в пищевой и фармацевтической промышленности, — для экстракции душистых веществ, в синтезе полимеров и даже для производства мелкодисперсных порошков. Это позволяет сократить технологическую цепочку, а значит, снизить стоимость продукции и услуг. Но главное — это экологически чистые процессы. Первое промышленное производство, применяющее сверхкритические флюиды, заработало в 1978 году — это была установка по декофеинизации кофе, за ним в 1982 году последовала промышленная экстракция хмеля (для пивоваренной промышленности). Сегодня на Западе довольно много предприятий работает по этой прогрессивной технологии.

Наиболее популярные сверхкритические флюиды — углекислый газ, вода, пропан, аммиак и некоторые другие соединения с невысокими критическими температурами. Чаще всего используют сверхкритический углекислый газ, поскольку он нетоксичен, дёшев, легко доступен и имеет удобные параметры (Tс = 31°C, Pс = 7,38 МПа). У нас таких предприятий почти нет (НИЦ ЭР „ГОРО“ — пожалуй, единственное исключение). Проблема в том, что нет заинтересованности на государственном уровне в новых чистых технологиях, а значит, и желания вкладывать средства.

Впрочем, научные исследования у нас продолжаются, специализированные конференции проводятся, в 2005 году был даже создан Консорциум организаций в области сверхкритических флюидных технологий (Консорциум СКФТ). С октября 2006 года начал выходить специализированный журнал „Сверхкритические флюиды: теория и практика“.

Краткий экскурс в историю

Сверхкритическую воду систематически исследуют с начала прошлого века. Однако сегодня эти работы привлекательны не только с теоретической точки зрения. Есть надежда, что самый распространённый, дешёвый, безопасный и экологически чистый растворитель займет свою уникальную нишу в химической промышленности. (Конечно, речь не об обычной воде.)

Фазовая диаграмма воды
Фазовая диаграмма воды
Сверхкритические состояния первым начал изучать Каньяр де ля Тур в 1822 году. Если любую кипящую жидкость (когда существует равновесие между жидкостью и паром) продолжать нагревать и увеличивать давление, то в какой-то момент плотности жидкости и пара становятся одинаковыми, а граница раздела между этими фазами исчезает. В этой критической точке вещество переходит в промежуточное состояние — становится не газом и не жидкостью. При температуре выше критической точки уже двух фаз не получится, хотя если этот однородный флюид сжимать, то его плотность будет меняться от газоподобного к жидкоподобному. При меньших температурах вода находится в докритическом состоянии, а при изменении давления её плотность меняется скачком: жидкость переходит в пар. Выше — в сверхкритическом, вещество однородно, а плотность меняется непрерывно.

В XIX веке химия сверхкритических сред развивалась довольно медленно, и только к концу века вышел первый обзор на эту тему. Во второй половине XX века учёные стали всерьёз задумываться об экологической безопасности и повышении эффективности химических производств и потому заинтересовались веществами в сверхкритическом состоянии (их называют флюидами). И если лет тридцать назад об экологически чистой химии на основе сверхкритических флюидов рассуждали на языке теории, то сегодня на Западе эта область химической технологии активно развивается („Химия и жизнь“, 2000, № 2; 2004, № 6).

Таблица
Параметры критического
состояния различных веществ
РастворительT, КP, МПаρ, кг/м3
C2H4282,15,041214
Xe289,55,8401110
CO2303,97,375468
C2H6305,24,884203
N2O309,47,255452
NH3405,311,350235
C2H5OH513,76,137276
H2O646,922,060322

Критическая точка вещества характеризуется критическими значениями температуры, давления и плотности (см. рис.). Разброс этих параметров для различных веществ очень велик (они приведены в таблице), но все они легко достижимы и в лаборатории, и в промышленности. Для технологических процессов лучше всего подходит диоксид углерода — именно его сегодня применяют для экстракции, разделения веществ и многого другого. Сверхкритическую воду пока используют значительно реже, поскольку она становится флюидом при 374°C и 22,064 МПа, что для практического использования не очень удобно. А между тем в этом состоянии она приобретает ценнейшие свойства. Например, сверхкритическая вода становится почти универсальным растворителем, а также довольно сильным окислителем. Как же это происходит?

Туманный флюид

На самом деле до сих пор нет однозначного ответа на вопрос, каково физическое состояние среды, именуемой флюидом.

Если мы говорим о твёрдых телах, то обычно используем термины „структура“, „строение“. Это крайне неудачные слова для обозначения того, что происходит в жидкости или газе. Если бы нам каким-то образом удалось получить координаты всех частиц в жидкости, то уже в следующее мгновение эти данные устареют, поскольку положение частиц сильно изменится. Само слово „структура“ подразумевает нечто прочное, незыблемое, и это искажает представления о жидком и флюидном состоянии вещества. К сожалению, другого подходящего термина нет. Можно, конечно, говорить о „ближнем порядке“, но и это не передает главную особенность флюидного состояния — непрерывно меняющегося движения молекул.

В обычных условиях молекулы воды связаны между собой водородными связями и объединены в трёхмерную сетку, образуя „бесконечный кластер“, или агрегаты (H2O)i+1 По мере повышения температуры водородные связи рвутся, а упорядоченность молекулярного строения нарушается. По мнению авторов гипотезы о строении сверхкритической воды (см. журнал „Сверхкритические флюиды“, 2007, № 2), выше критической температуры бесконечных кластеров уже нет. В области критической изотермы на фазовой диаграмме в сверхкритическом флюиде существуют только кластеры конечных размеров и молекулы с большим дефицитом водородных связей, свободно вращающиеся в среде. Похоже это на состояние молекул в жидкости? В жидкости преобладают силы притяжения между молекулами (взаимодействие Ван-дер-Вальса, или водородные связи) — это условие существования бесконечного кластера. С этой точки зрения сверхкритический водный флюид совершенно не похож на жидкость. Но это и не газ (когда большая часть молекул может свободно вращаться), поскольку в такой среде часто возникают конфигурации, типичные для жидкого состояния. Авторы гипотезы называют это состояние транзитным. Получается, что критическая изотерма — это граница существования бесконечного кластера связанных молекул. В общем, с физическим состоянием среды учёным ещё предстоит разбираться.

Уже накоплено много экспериментальных данных по сверхкритическому состоянию воды. Все эти данные подтверждают, что при повышении температуры и давления меняются: её диэлектрическая проницаемость, электропроводность, ионное произведение, структура водородных связей.

Из всех жидкостей вода, наверное, претерпевает самые сильные изменения, переходя в сверхкритическое состояние. Если при нормальном давлении и температуре вода — полярный растворитель, то в сверхкритической воде растворяются почти все органические вещества. Растворимость неорганических веществ также меняется. Даже небольшое отклонение температуры и давления вблизи критической точки изменяет все физико-химические характеристики воды, поэтому при малейших флуктуациях давления и температуры в такой воде могут полностью растворяться или, наоборот, осаждаться оксиды и соли. Собственно, на этом основана технология гидротермального выращивания кристаллов, которой больше полувека.

Естественный сверхкритический реактор

В природе существует громадный естественный сверхкритический реактор. Это — земные недра, в которых на глубине более 50 км вода находится в сверхкритических условиях. Вода — основа „гидротермального флюида“ (геологический термин), то есть горячего, сильно сжатого водного раствора, содержащего много компонентов. Перенося на огромные расстояния растворённые в ней вещества, сверхкритическая вода (скH2O) принимает непременное участие в важнейших геологических процессах: в формировании земной коры, вулканической деятельности, в концентрировании минеральных веществ в земной коре. Можно сказать, что благодаря сверхкритической воде сформировался геологический облик нашей планеты.

По образу и подобию того, что происходит под землёй, исследователи уже почти полвека назад разработали технологию гидротермального синтеза кристаллов. Наверное, это единственная технология на сверхкритической воде, которую уже давно и успешно применяют. Гидротермальный синтез позволяет получать кристаллы неорганических веществ (например, кварца и других оксидов, алюмосиликатов, фосфатов и других) в условиях, моделирующих процессы образования минералов в земных недрах. Основан этот метод на способности воды при высоких температурах и давлении растворять оксиды, силикаты, сульфиды и другие вещества, практически нерастворимые в обычных условиях, а при направленном изменении параметров, наоборот, провоцировать их кристаллизацию. Так ежегодно выращивают сотни тонн крупных монокристаллов кварца (массой до 50 кг). По этой же технологии получают искусственные рубины, сапфиры и другие материалы для современной промышленности.

Перспективы

В сверхкритическом состоянии вода (скH2O ) неограниченно смешивается с кислородом, водородом и углеводородами, облегчая их взаимодействие между собой — в ней очень быстро протекают все реакции окисления. Одно из особенно интересных применений такой воды — эффективное уничтожение боевых отравляющих веществ. В смеси с другими веществами скH2O можно использовать не только для окисления, но и в реакциях гидролиза, гидратации, образования и расщепления углерод-углеродных связей, гидрирования и других.

До- и сверхкритическая вода — это нетоксичный растворитель, свойствами которого можно управлять, подстраивая их под конкретную каталитическую реакцию. В процессах со сверхкритическим флюидом нет проблем с диффузией на границе газ-жидкость (ведь это не газ и не жидкость), а значит, легче регулировать скорость такой реакции. Есть данные, что и процесс отравления катализатора также протекает гораздо медленнее.

Наконец, сверхкритическая вода может быть реагентом или средой для получения нанокристаллических частиц (в частности, оксидных катализаторов) с заданными свойствами, которые уже синтезируют в проточных реакторах. Частицы, образующиеся в таком процессе, имеют примерно один размер и довольно развитую поверхность. Кстати, воду в сверхкритическом состоянии можно использовать для получения не только оксидных, но и других нанокристаллических материалов, например, из аморфного углерода синтезировать углеродные нанотрубки.

Несмотря на всё разнообразие возможных применений до- и сверхкритической воды, она прежде всего важна для решения экологических проблем. Переработка и разложение всё возрастающих количеств неорганических и органических отходов — вот задача, для решения которой понадобится безопасный растворитель практически любых твёрдых соединений. Все традиционные способы — сжигание, жидкофазное окисление или биоразложение — имеют свои недостатки. Так, при сжигании органических отходов образуются токсичные вещества, в частности оксиды азота, которые нужно утилизировать. А биоразложение требует много времени и возможно лишь для нейтрализации отходов, содержащих до 1 мас.% органических веществ.

Переработка органических отходов с использованием скH2O — хорошая альтернатива. По оценке специалистов, строительство предприятия по переработке пиридинсодержащих растворов с помощью сверхкритической воды обойдётся дешевле, чем сжигание и низкотемпературное жидкофазное окисление. Уже есть методы дехлорирования и деароматизации растворов органических соединений, переработки полимеров и пластмасс, окисления коммунальных и пищевых отходов, газификации биомассы, окисления токсичных отходов военно-морского флота, гидролиза целлюлозы и лигнина, а также удаления тяжёлых металлов из различных стоков.

Главная проблема, которая тормозит внедрение технологий со сверхкритической водой, — это довольно высокая стоимость промышленных аппаратов, работающих под большим давлением: для них нужны жаропрочные сплавы и специальная обвязка, исключающая возможность взрывов реакторов. Кроме того, скH2O — агрессивная среда, она вызывает коррозию деталей. Эта проблема, как и отложение солей в трубопроводах, хорошо известна по работе тепловых электростанций. Когда же технические задачи будут решены, а стоимость уже не будет определяющим фактором, останется пробить мощное лобби традиционных химических компаний.

Подготовлено по материалам:
    Галкин А.А., Лунин В.В. „Вода в суб- и сверхкритическом состояниях — универсальная среда для осуществления химических реакций“, журнал „Успехи химии“, 2005, 74 (1).
    Горбатый Ю.Е., Бондаренко Г.В. „Сверхкритическое состояние воды“, журнал „Сверхкритические флюиды. Теория и практика“, 2007, № 2.
Автор благодарит доктора химических наук В.М. Валяшко за помощь в подготовке материала.

Химия и жизнь — XXI век

Статьи близкой тематики:
Вода знакомая и загадочная.  Леонид Кульский, Воля Даль, Людмила Ленчина.
Самое необычное вещество в мире.  Академик И. В. Петрянов-Соколов.
Споры о структуре воды.  Г. Г. Маленков.
Изменения воды.  Г. Р. Иваницкий.
Сок жизни на Земле.  Д. Я. Фащук.

2007 Copyright © AstroSearch.ru Мобильная Версия v.2015 | PeterLife и компания
Пользовательское соглашение использование материалов сайта разрешено с активной ссылкой на сайт
Яндекс.Метрика Яндекс цитирования